Summary of recommendations

Improving mathematics in upper primary and lower secondary

1. **Use assessment to build on students’ existing knowledge and understanding**
 - Assessment should be used not only to track students’ learning but also to provide teachers with information about what students do and do not know.
 - This should inform the planning of future lessons and the focus of targeted support.
 - Effective feedback will be an important element of teachers’ response to assessment.
 - Feedback should be specific and clear, encouraging and support further effort, and be given promptly.
 - Teachers not only have to address misconceptions but also understand why students may persist with errors.
 - Knowledge of common misconceptions can be invaluable in planning lessons to address errors before they arise.

2. **Use manipulatives and representations**
 - Manipulatives (physical objects used to teach maths) and representations (such as number lines and graphs) can help students engage with mathematical ideas.
 - However, manipulatives and representations are just tools; how they are used is essential.
 - They need to be used purposefully and appropriately to have an impact.
 - There must be a clear rationale for using a particular manipulative or representation to teach a specific mathematical concept.
 - Manipulatives should be temporary; they should act as a ‘scaffold’ that can be removed once independence is achieved.

3. **Teach strategies for solving problems**
 - If students lack a well-rehearsed and readily available method to solve a problem, they need to draw on problem-solving strategies to make sense of the unfamiliar situation.
 - Select problem-solving tasks for which students do not have ready-made solutions.
 - Teach students to use and compare different approaches.
 - Show students how to interrogate and use their existing knowledge to solve problems.
 - Use worked examples to enable students to analyse the use of different strategies.
 - Require students to monitor, reflect on, and communicate their problem-solving strategies.

4. **Enable students to develop a rich network of mathematical knowledge**
 - Emphasise the many connections between mathematical facts, procedures, and concepts.
 - Ensure that students develop fluent recall of facts.
 - Teach students to understand procedures.
 - Teach students to consciously choose between mathematical strategies.
 - Build on students’ informal understanding of sharing and proportionality to introduce procedures.
 - Teach students that fractions and decimals extend the number system beyond whole numbers.
 - Teach students to recognise and use mathematical structure.

5. **Develop students’ independence and motivation**
 - Encourage students to take responsibility for, and play an active role in, their own learning.
 - This requires students to develop metacognition – the ability to independently plan, monitor and evaluate their thinking and learning.
 - Initially, teachers may have to model metacognition by describing their own thinking.
 - Provide regular opportunities for students to develop metacognition by encouraging them to explain their thinking to themselves and others.
 - Avoid doing too much too early.
 - Positive attitudes are important, but there is scant evidence on the most effective ways to foster them.
 - School leaders should ensure that all staff, including non-teaching staff, encourage enjoyment in maths for all children.

6. **Use tasks and resources to challenge and support students’ mathematics**
 - Tasks and resources are just tools – they will not be effective if they are used inappropriately by the teacher.
 - Use assessment of students’ strengths and weaknesses to inform your choice of task.
 - Use tasks to address student misconceptions.
 - Provide examples and non-examples of concepts.
 - Use stories and problems to help students understand mathematics.
 - Use tasks to build conceptual knowledge in tandem with procedural knowledge.
 - Technology is not a silver bullet – it has to be used judiciously and less costly resources may be just as effective.

7. **Use structured interventions to provide additional support**
 - Selection should be guided by student assessment.
 - Interventions should start early, be evidence-based and be carefully planned.
 - Interventions should include explicit and systematic instruction.
 - Even the best-designed intervention will not work if implementation is poor.
 - Support students to understand how interventions are connected to whole-class instruction.
 - Interventions should motivate students – not bore them or cause them to be anxious.
 - If interventions cause students to miss activities they enjoy, or content they need to learn, teachers should ask if the interventions are really necessary.
 - Avoid “intervention fatigue”. Interventions do not always need to be time-consuming or intensive to be effective.

8. **Support students to make a successful transition between primary and secondary school**
 - There is a large dip in mathematical attainment and attitudes towards maths as children move from primary to secondary school.
 - Primary and secondary schools should develop shared understandings of curriculum, teaching and learning.
 - When students arrive in Year 7, quickly attain a good understanding of their strengths and weaknesses.
 - Structured intervention support may be required for Year 7 students who are struggling to make progress.
 - Carefully consider how students are allocated to maths classes.
 - Setting is likely to lead to a widening of the attainment gap between disadvantaged students and their peers, because the former are more likely to be assigned to lower groups.